Saccharomyces SRP RNA secondary structures: A conserved S-domain and extended Alu-domain
نویسندگان
چکیده
منابع مشابه
Structure of the phylogenetically most conserved domain of SRP RNA.
The signal recognition particle (SRP) is a phylogenetically conserved ribonucleoprotein required for cotranslational targeting of proteins to the membrane of the endoplasmic reticulum of the bacterial plasma membrane. Domain IV of SRP RNA consists of a short stem-loop structure with two internal loops that contain the most conserved nucleotides of the molecule. All known essential interactions ...
متن کاملStructure of the complete bacterial SRP Alu domain
The Alu domain of the signal recognition particle (SRP) arrests protein biosynthesis by competition with elongation factor binding on the ribosome. The mammalian Alu domain is a protein-RNA complex, while prokaryotic Alu domains are protein-free with significant extensions of the RNA. Here we report the crystal structure of the complete Alu domain of Bacillus subtilis SRP RNA at 2.5 Å resolutio...
متن کاملConserved RNA secondary structures in Picornaviridae genomes.
The family Picornaviridae contains important pathogens including, for example, hepatitis A virus and foot-and-mouth disease virus. The genome of these viruses is a single messenger-active (+)-RNA of 7200-8500 nt. Besides coding for the viral proteins, it also contains functionally important RNA secondary structures, among them an internal ribosomal entry site (IRES) region towards the 5'-end. T...
متن کاملConserved RNA secondary structures in Flaviviridae genomes.
Presented here is a comprehensive computational survey of evolutionarily conserved secondary structure motifs in the genomic RNAs of the family Flaviviridae: This virus family consists of the three genera Flavivirus, Pestivirus and Hepacivirus and the group of GB virus C/hepatitis G virus with a currently uncertain taxonomic classification. Based on the control of replication and translation, t...
متن کاملConserved RNA secondary structures promote alternative splicing.
Pre-mRNA splicing is carried out by the spliceosome, which identifies exons and removes intervening introns. Alternative splicing in higher eukaryotes results in the generation of multiple protein isoforms from gene transcripts. The extensive alternative splicing observed implies a flexibility of the spliceosome to identify exons within a given pre-mRNA. To reach this flexibility, splice-site s...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: RNA
سال: 2004
ISSN: 1355-8382
DOI: 10.1261/rna.5137904